banner



Ann Design For 3d Data

Skip Nav Destination

Research Papers

Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing

Glen Williams,

Mechanical Engineering,

The Pennsylvania State University

,

137 Reber Building, University Park, PA 16802-4400

Search for other works by this author on:

Nicholas A. Meisel,

Nicholas A. Meisel

Mem. ASME

Engineering Design,

The Pennsylvania State University

,

213 Hammond Building, University Park, PA 16802

Search for other works by this author on:

Timothy W. Simpson,

Timothy W. Simpson

Fellow ASME

Mechanical Engineering,

The Pennsylvania State University

,

137 Reber Building, University Park, PA 16802-4400

Search for other works by this author on:

Christopher McComb

Christopher McComb

Mem. ASME

Engineering Design,

The Pennsylvania State University

,

213 Hammond Building, University Park, PA 16802

Search for other works by this author on:

Crossmark: Check for Updates

Glen Williams Mem. ASME

Mechanical Engineering,

The Pennsylvania State University

,

137 Reber Building, University Park, PA 16802-4400

Nicholas A. Meisel Mem. ASME

Engineering Design,

The Pennsylvania State University

,

213 Hammond Building, University Park, PA 16802

Timothy W. Simpson Fellow ASME

Mechanical Engineering,

The Pennsylvania State University

,

137 Reber Building, University Park, PA 16802-4400

Christopher McComb Mem. ASME

Engineering Design,

The Pennsylvania State University

,

213 Hammond Building, University Park, PA 16802

Contributed by the Design for Manufacturing Committee of ASME for publication in the Journal of Mechanical Design.

J. Mech. Des. Nov 2019, 141(11): 111701 (12 pages)

Published Online: September 16, 2019

Abstract

Machine learning can be used to automate common or time-consuming engineering tasks for which sufficient data already exist. For instance, design repositories can be used to train deep learning algorithms to assess component manufacturability; however, methods to determine the suitability of a design repository for use with machine learning do not exist. We provide an initial investigation toward identifying such a method using "artificial" design repositories to experimentally test the extent to which altering properties of the dataset impacts the assessment precision and generalizability of neural networks trained on the data. For this experiment, we use a 3D convolutional neural network to estimate quantitative manufacturing metrics directly from voxel-based component geometries. Additive manufacturing (AM) is used as a case study because of the recent growth of AM-focused design repositories such as GrabCAD and Thingiverse that are readily accessible online. In this study, we focus only on material extrusion, the dominant consumer AM process, and investigate three AM build metrics: (1) part mass, (2) support material mass, and (3) build time. Additionally, we compare the convolutional neural network accuracy to that of a baseline multiple linear regression model. Our results suggest that training on design repositories with less standardized orientation and position resulted in more accurate trained neural networks and that orientation-dependent metrics were harder to estimate than orientation-independent metrics. Furthermore, the convolutional neural network was more accurate than the baseline linear regression model for all build metrics.

References

2.

Regli

,

W. C.

, and

Cicirello

,

V. A.

,

2000

, "

Managing Digital Libraries for Computer-Aided Design

,"

Comput. Aided Des.

,

32

(

2

), pp.

119

132

.

3.

Lyu

,

G.

,

Chu

,

X.

, and

Xue

,

D.

,

2017

, "

Product Modeling From Knowledge, Distributed Computing and Lifecycle Perspectives: A Literature Review

,"

Comput. Ind.

,

84

, pp.

1

13

. 10.1016/j.compind.2016.11.001

4.

Dering

,

M. L.

, and

Tucker

,

C. S.

,

2017

, "

A Convolutional Neural Network Model for Predicting a Product's Function, Given Its Form

,"

ASME J. Mech. Des.

,

139

(

11

), p.

111408

. 10.1115/1.4037309

5.

McComb

,

C.

,

Murphey

,

C.

,

Meisel

,

N.

, and

Simpson

,

T. W.

,

2018

, "

Predicting Part Mass, Required Support Material, and Build Time Via Autoencoded Voxel Patterns

,"

29th Annual International Solid Freeform Fabrication Symposium

,

Austin, TX

,

Aug. 13–15

, pp.

1

15

.

6.

Munguía

,

J.

,

Ciurana

,

J.

, and

Riba

,

C.

,

2009

, "

Neural-Network-Based Model for Build-Time Estimation in Selective Laser Sintering

,"

Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.

,

223

(

8

), pp.

995

1003

. 10.1243/09544054JEM1324

7.

Tsai

,

H.-C.

,

Hsiao

,

S.-W.

, and

Hung

,

F.-K.

,

2006

, "

An Image Evaluation Approach for Parameter-Based Product Form and Color Design

,"

Comput. Aided Des.

,

38

(

2

), pp.

157

171

.

8.

Chan

,

S. L.

,

Lu

,

Y.

, and

Wang

,

Y.

,

2018

, "

Data-Driven Cost Estimation for Additive Manufacturing in Cybermanufacturing

,"

J. Manuf. Syst.

,

46

, pp.

115

126

. 10.1016/j.jmsy.2017.12.001

9.

Samie Tootooni

,

M.

,

Dsouza

,

A.

,

Donovan

,

R.

,

Rao

,

P. K.

,

James Kong

,

Z.

, and

Borgesen

,

P.

,

2017

, "

Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches

,"

J. Manuf. Sci. Eng.

,

139

(

9

), p.

091005

. 10.1115/1.4036641

10.

Maturana

,

D.

, and

Scherer

,

S.

,

2015

, "

VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition

,"

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

,

Hamburg, Germany

,

Sept. 28–Oct. 2

, pp.

922

928

.

11.

Jain

,

A. K.

,

Mao

,

J.

, and

Mohiuddin

,

K. M.

,

1996

, "

Artificial Neural Networks: A Tutorial

,"

Computer

,

29

(

3

), pp.

31

44

.

12.

Pal

,

N. R.

, and

Pal

,

S. K.

,

1993

, "

A Review on Image Segmentation Techniques

,"

Pattern Recognit.

,

26

(

9

), pp.

1277

1294

. 10.1016/0031-3203(93)90135-J

13.

Egmont-Petersen

,

M.

,

de Ridder

,

D.

, and

Handels

,

H.

,

2002

, "

Image Processing With Neural Networks—A Review

,"

Pattern Recognit.

,

35

(

10

), pp.

2279

2301

. 10.1016/S0031-3203(01)00178-9

14.

McComb

,

C.

,

2019

, "Toward the Rapid Design of Engineered Systems Through Deep Neural Networks,"

Design Computing and Cognition'18

,

J. S.

Gero

, ed.,

Springer International Publishing

,

Cham

, pp.

3

20

.

15.

Kleesiek

,

J.

,

Urban

,

G.

,

Hubert

,

A.

,

Schwarz

,

D.

,

Maier-Hein

,

K.

,

Bendszus

,

M.

, and

Biller

,

A.

,

2016

, "

Deep MRI Brain Extraction: A 3D Convolutional Neural Network for Skull Stripping

,"

Neuroimage

,

129

, pp.

460

469

. 10.1016/j.neuroimage.2016.01.024

16.

Wang

,

T.-M.

,

Xi

,

J.-T.

, and

Jin

,

Y.

,

2007

, "

A Model Research for Prototype Warp Deformation in the FDM Process

,"

Int. J. Adv. Manuf. Technol.

,

33

(

11–12

), pp.

1087

1096

. 10.1007/s00170-006-0556-9

17.

Khosravi

,

A.

,

Nahavandi

,

S.

,

Creighton

,

D.

, and

Atiya

,

A. F.

,

2011

, "

Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances

,"

IEEE Trans. Neural Networks

,

22

(

9

), pp.

1341

1356

. 10.1109/TNN.2011.2162110

18.

Austin

,

P. C.

, and

Steyerberg

,

E. W.

,

2015

, "

The Number of Subjects Per Variable Required in Linear Regression Analyses

,"

J. Clin. Epidemiol

,

68

(

6

), pp.

627

636

. 10.1016/j.jclinepi.2014.12.014

19.

Regli

,

W. C.

, and

Gaines

,

D. M.

,

1997

, "

A Repository for Design, Process Planning and Assembly

,"

Comput. Aided Des.

,

29

(

12

), pp.

895

905

.

20.

Szykman

,

S.

,

2002

, "

Architecture and Implementation of a Design Repository System

,"

Volume 1: 22nd Computers and Information in Engineering Conference

,

Montreal, Quebec, Canada

,

Sept. 29–Oct. 2

, ASME, pp.

429

443

.

21.

Bohm

,

M. R.

,

Stone

,

R. B.

, and

Szykman

,

S.

,

2005

, "

Enhancing Virtual Product Representations for Advanced Design Repository Systems

,"

J. Comput. Inf. Sci. Eng.

,

5

(

4

), p.

360

. 10.1115/1.1884618

22.

Bohm

,

M. R.

,

Stone

,

R. B.

,

Simpson

,

T. W.

, and

Steva

,

E. D.

,

2006

, "

Introduction of a Data Schema: The Inner Workings of a Design Repository

,"

Volume 3: 26th Computers and Information in Engineering Conference

,

Philadelphia, PA

,

Sept. 10–13

, ASME, pp.

631

642

.

23.

Bohm

,

M. R.

,

Vucovich

,

J. P.

, and

Stone

,

R. B.

,

2008

, "

Using a Design Repository to Drive Concept Generation

,"

J. Comput. Inf. Sci. Eng.

,

8

(

1

), p.

014502

. 10.1115/1.2830844

24.

Devendorf

,

M.

,

Lewis

,

K.

,

Simpson

,

T. W.

,

Stone

,

R. B.

, and

Regli

,

W. C.

,

2009

, "

Evaluating the Use of Digital Product Repositories to Enhance Product Dissection Activities in the Classroom

,"

J. Comput. Inf. Sci. Eng.

,

9

(

4

), p.

041008

. 10.1115/1.3264574

25.

Wu

,

Z.

,

Song

,

S.

,

Khosla

,

A.

,

Yu

,

F.

,

Zhang

,

L.

,

Tang

,

X.

, and

Xiao

,

J.

,

2015

, "

3D ShapeNets: A Deep Representation for Volumetric Shapes

,"

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

,

Boston, MA

,

June 7–12

, pp.

1912

1920

.

26.

Chang

,

A. X.

,

Funkhouser

,

T.

,

Guibas

,

L.

,

Hanrahan

,

P.

,

Huang

,

Q.

,

Li

,

Z.

,

Savarese

,

S.

,

Savva

,

M.

,

Song

,

S.

,

Su

,

H.

,

Xiao

,

J.

,

Yi

,

L.

, and

Yu

,

F.

,

2015

, "

ShapeNet: An Information-Rich 3D Model Repository

."

27.

Aoyagi

,

K.

,

Wang

,

H.

,

Sudo

,

H.

, and

Chiba

,

A.

,

2019

, "

Simple Method to Construct Process Maps for Additive Manufacturing Using a Support Vector Machine

,"

Addit. Manuf.

,

27

, pp.

353

362

. 10.1016/j.addma.2019.03.013

28.

Menon

,

A.

,

Póczos

,

B.

,

Feinberg

,

A. W.

, and

Washburn

,

N. R.

,

2019

, "

Optimization of Silicone 3D Printing With Hierarchical Machine Learning

,"

3D Print. Addit. Manuf.

(submitted). 10.1089/3dp.2018.0088

29.

Sharifi

,

S.

, and

Banadaki

,

Y. M.

,

2019

,

Smart Structures and NDE for Energy Systems and Industry 4.0

,

C.

Niezrecki

,

N. G.

Meyendorf

,

K.

Gath

, eds.,

SPIE

,

Anaheim, CA

, p.

33

.

30.

Harrison

,

R.

,

Holm

,

E. A.

, and

De Graef

,

M.

,

2019

, "

On the Use of 2D Moment Invariants in the Classification of Additive Manufacturing Powder Feedstock

,"

Mater. Charact.

,

149

, pp.

255

263

. 10.1016/j.matchar.2019.01.019

31.

He

,

H.

,

Yang

,

Y.

, and

Pan

,

Y.

,

2019

, "

Machine Learning for Continuous Liquid Interface Production: Printing Speed Modelling

,"

J. Manuf. Syst.

,

50

, pp.

236

246

. 10.1016/j.jmsy.2019.01.004

32.

Stavroulakis

,

P.

,

Chen

,

S.

,

Delorme

,

C.

,

Bointon

,

P.

,

Tzimiropoulos

,

G.

, and

Leach

,

R.

,

2019

, "

Rapid Tracking of Extrinsic Projector Parameters in Fringe Projection Using Machine Learning

,"

Opt. Lasers Eng.

,

114

, pp.

7

14

. 10.1016/j.optlaseng.2018.08.018

33.

Baturynska

,

I.

,

Semeniuta

,

O.

, and

Martinsen

,

K.

,

2018

, "

Optimization of Process Parameters for Powder Bed Fusion Additive Manufacturing by Combination of Machine Learning and Finite Element Method: A Conceptual Framework

,"

Procedia CIRP

,

67

, pp.

227

232

. 10.1016/j.procir.2017.12.204

34.

Scime

,

L.

, and

Beuth

,

J.

,

2019

, "

Using Machine Learning to Identify In-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process

,"

Addit. Manuf.

,

25

, pp.

151

165

. 10.1016/j.addma.2018.11.010

35.

Caggiano

,

A.

,

Zhang

,

J.

,

Alfieri

,

V.

,

Caiazzo

,

F.

,

Gao

,

R.

, and

Teti

,

R.

,

2019

, "

Machine Learning-Based Image Processing for On-Line Defect Recognition in Additive Manufacturing

,"

CIRP Ann.

,

68

, pp.

3

6

.

36.

Lin

,

W.

,

Shen

,

H.

,

Fu

,

J.

, and

Wu

,

S.

,

2019

, "

Online Quality Monitoring in Material Extrusion Additive Manufacturing Processes Based on Laser Scanning Technology

,"

Precis. Eng.

10.1016/j.precisioneng.2019.06.004

37.

Zhang

,

B.

,

Liu

,

S.

, and

Shin

,

Y. C.

,

2019

, "

In-Process Monitoring of Porosity During Laser Additive Manufacturing Process

,"

Addit. Manuf.

,

28

, pp.

497

505

. 10.1016/j.addma.2019.05.030

38.

Liu

,

C.

,

Law

,

A. C. C.

,

Roberson

,

D.

, and

James Kong

,

Z.

,

2019

, "

Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing With Fused Filament Fabrication

,"

J. Manuf. Syst.

,

51

, pp.

75

86

. 10.1016/j.jmsy.2019.04.002

39.

Sturm

,

L. D.

,

Albakri

,

M. I.

,

Tarazaga

,

P. A.

, and

Williams

,

C. B.

,

2019

, "

In Situ Monitoring of Material Jetting Additive Manufacturing Process Via Impedance Based Measurements

,"

Addit. Manuf.

,

28

, pp.

456

463

. 10.1016/j.addma.2019.05.022

40.

Wu

,

H.

,

Yu

,

Z.

, and

Wang

,

Y.

,

2019

, "

Experimental Study of the Process Failure Diagnosis in Additive Manufacturing Based on Acoustic Emission

,"

Measurement

,

136

, pp.

445

453

. 10.1016/j.measurement.2018.12.067

41.

Tapia

,

G.

,

Elwany

,

A. H.

, and

Sang

,

H.

,

2016

, "

Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models

,"

Addit. Manuf.

,

12

, pp.

282

290

. 10.1016/j.addma.2016.05.009

42.

Wu

,

M.

,

Song

,

Z.

, and

Moon

,

Y. B.

,

2019

, "

Detecting Cyber-Physical Attacks in Cybermanufacturing Systems With Machine Learning Methods

,"

J. Intell. Manuf.

,

30

(

3

), pp.

1111

1123

. 10.1007/s10845-017-1315-5

43.

Al Faruque

,

M. A.

,

Chhetri

,

S. R.

,

Canedo

,

A.

, and

Wan

,

J.

,

2016

, "

Acoustic Side-Channel Attacks on Additive Manufacturing Systems

,"

2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)

,

Vienna, Austria

,

Apr. 11–14

, pp.

1

10

.

44.

Al Faruque

,

M. A.

,

Chhetri

,

S. R.

,

Canedo

,

A.

, and

Wan

,

J.

,

2016

, "

Forensics of Thermal Side-Channel in Additive Manufacturing Systems

," CECS Tech. Report# 16-01.

45.

Francis

,

J.

, and

Bian

,

L.

,

2019

, "

Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data

,"

Manuf. Lett.

,

20

, pp.

10

14

. 10.1016/j.mfglet.2019.02.001

46.

Khanzadeh

,

M.

,

Rao

,

P.

,

Jafari-Marandi

,

R.

,

Smith

,

B. K.

,

Tschopp

,

M. A.

, and

Bian

,

L.

,

2017

, "

Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts

,"

J. Manuf. Sci. Eng.

,

140

(

3

), p.

031011

. 10.1115/1.4038598

47.

Zhu

,

Z.

,

Anwer

,

N.

,

Huang

,

Q.

, and

Mathieu

,

L.

,

2018

, "

Machine Learning in Tolerancing for Additive Manufacturing

,"

CIRP Ann.

,

67

(

1

), pp.

157

160

. 10.1016/j.cirp.2018.04.119

48.

Hamel

,

C. M.

,

Roach

,

D. J.

,

Long

,

K. N.

,

Demoly

,

F.

,

Dunn

,

M. L.

, and

Qi

,

H. J.

,

2019

, "

Machine-Learning Based Design of Active Composite Structures for 4D Printing

,"

Smart Mater. Struct.

,

28

(

6

), p.

065005

. 10.1088/1361-665X/ab1439

49.

Li

,

Z.

,

Zhang

,

Z.

,

Shi

,

J.

, and

Wu

,

D.

,

2019

, "

Prediction of Surface Roughness in Extrusion-Based Additive Manufacturing With Machine Learning

,"

Robot. Comput. Integr. Manuf.

,

57

, pp.

488

495

. 10.1016/j.rcim.2019.01.004

50.

Gu

,

G. X.

,

Chen

,

C.-T.

,

Richmond

,

D. J.

, and

Buehler

,

M. J.

,

2018

, "

Bioinspired Hierarchical Composite Design Using Machine Learning: Simulation, Additive Manufacturing, and Experiment

,"

Mater. Horizons

,

5

(

5

), pp.

939

945

. 10.1039/C8MH00653A

51.

Gu

,

G. X.

,

Chen

,

C.-T.

, and

Buehler

,

M. J.

,

2018

, "

De Novo Composite Design Based on Machine Learning Algorithm

,"

Extreme Mech. Lett.

,

18

, pp.

19

28

. 10.1016/j.eml.2017.10.001

52.

Mies

,

D.

,

Marsden

,

W.

, and

Warde

,

S.

,

2016

, "

Overview of Additive Manufacturing Informatics: 'A Digital Thread'

,"

Integr. Mater. Manuf. Innov.

,

5

(

1

), pp.

114

142

. 10.1186/s40192-016-0050-7

53.

Gao

,

W.

,

Zhang

,

Y.

,

Ramanujan

,

D.

,

Ramani

,

K.

,

Chen

,

Y.

,

Williams

,

C. B.

,

Wang

,

C. C. L.

,

Shin

,

Y. C.

,

Zhang

,

S.

, and

Zavattieri

,

P. D.

,

2015

, "

The Status, Challenges, and Future of Additive Manufacturing in Engineering

,"

Comput. Des.

,

69

, pp.

65

89

.

54.

Thompson

,

M. K.

,

Moroni

,

G.

,

Vaneker

,

T.

,

Fadel

,

G.

,

Campbell

,

R. I.

,

Gibson

,

I.

,

Bernard

,

A.

,

Schulz

,

J.

,

Graf

,

P.

,

Ahuja

,

B.

, and

Martina

,

F.

,

2016

, "

Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints

,"

CIRP Ann.

,

65

(

2

), pp.

737

760

. 10.1016/j.cirp.2016.05.004

55.

Jee

,

H.

, and

Witherell

,

P.

,

2017

, "

A Method for Modularity in Design Rules for Additive Manufacturing

,"

Rapid Prototyp. J.

,

23

(

6

), pp.

1107

1118

. 10.1108/RPJ-02-2016-0016

56.

Francois

,

M. M.

,

Sun

,

A.

,

King

,

W. E.

,

Henson

,

N. J.

,

Tourret

,

D.

,

Bronkhorst

,

C. A.

,

Carlson

,

N. N.

,

Newman

,

C. K.

,

Haut

,

T.

,

Bakosi

,

J.

,

Gibbs

,

J. W.

,

Livescu

,

V.

,

Vander Wiel

,

S. A.

,

Clarke

,

A. J.

,

Schraad

,

M. W.

,

Blacker

,

T.

,

Lim

,

H.

,

Rodgers

,

T.

,

Owen

,

S.

,

Abdeljawad

,

F.

,

Madison

,

J.

,

Anderson

,

A. T.

,

Fattebert

,

J.-L.

,

Ferencz

,

R. M.

,

Hodge

,

N. E.

,

Khairallah

,

S. A.

, and

Walton

,

O.

,

2017

, "

Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities

,"

Curr. Opin. Solid State Mater. Sci.

,

21

(

4

), pp.

198

206

. 10.1016/j.cossms.2016.12.001

57.

Boschetto

,

A.

, and

Bottini

,

L.

,

2014

, "

Accuracy Prediction in Fused Deposition Modeling

,"

Int. J. Adv. Manuf. Technol.

,

73

(

5–8

), pp.

913

928

. 10.1007/s00170-014-5886-4

58.

Khadilkar

,

A.

,

Wang

,

J.

, and

Rai

,

R.

,

2019

, "

Deep Learning-Based Stress Prediction for Bottom-Up SLA 3D Printing Process

,"

Int. J. Adv. Manuf. Technol.

,

102

(

5–8

), pp.

2555

2569

. 10.1007/s00170-019-03363-4

59.

Xie

,

W.

,

Noble

,

J. A.

, and

Zisserman

,

A.

,

2018

, "

Microscopy Cell Counting and Detection With Fully Convolutional Regression Networks

,"

Comput. Methods Biomech. Biomed. Eng. Imaging Vis.

,

6

(

3

), pp.

283

292

. 10.1080/21681163.2016.1149104

60.

Townsend

,

A.

,

Senin

,

N.

,

Blunt

,

L.

,

Leach

,

R. K.

, and

Taylor

,

J. S.

,

2016

, "

Surface Texture Metrology for Metal Additive Manufacturing: A Review

,"

Precis. Eng.

,

46

, pp.

34

47

. 10.1016/j.precisioneng.2016.06.001

61.

Alexander

,

P.

,

Allen

,

S.

, and

Dutta

,

D.

,

1998

, "

Part Orientation and Build Cost Determination in Layered Manufacturing

,"

Comput. Des.

,

30

(

5

), pp.

343

356

.

62.

ASTM International/U.S. Department of Defense

,

2014

, "

ASTM A6/A6M Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling

,"

ASME Boiler & Pressure Vessel Code

,

96

(

C

), pp.

1

63

.

63.

ASTM

,

2001

, "

Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

," p.

21

.

64.

ASTM

,

2014

, "

Standard Test Method for Tensile Properties of Plastics

,"

ASTM D

,

638

, pp.

1

17

.

65.

Pilz

,

M.

, and

Kamel

,

H. A.

,

1989

, "

Creation and Boundary Evaluation of CSG-Models

,"

Eng. Comput.

,

5

(

2

), pp.

105

118

. 10.1007/BF01199073

66.

Zhang

,

Y.

,

Bernard

,

A.

,

Harik

,

R.

, and

Karunakaran

,

K. P.

,

2017

, "

Build Orientation Optimization for Multi-Part Production in Additive Manufacturing

,"

J. Intell. Manuf.

,

28

(

6

), pp.

1393

1407

. 10.1007/s10845-015-1057-1

67.

Zhang

,

Y.

, and

Bernard

,

A.

,

2013

,

High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping

,

CRC Press

,

Boca Raton, FL

, pp.

411

416

.

68.

Haynes

,

W.

,

2013

, "Tukey's Test,"

Encyclopedia of Systems Biology

,

W.

Dubitzky

,

O.

Wolkenhauer

,

K.-H.

Cho

, and

H.

Yokota

, eds.,

Springer

,

New York, NY

, pp.

2303

2304

.

69.

Marsan

,

A. L.

,

Kumar

,

V.

,

Dutta

,

D.

, and

Pratt

,

M. J.

,

1998

,

An Assessment of Data Requirements and Data Transfer Formats for Layered Manufacturing

,

Commerce Department, National Institute of Standards and Technology (NIST)

,

Gaithersburg, MD

.

70.

Kechagias

,

J.

, and

Chryssolouris

,

G.

,

1997

, "

Estimation of Build Times in Rapid Prototyping Processes

,"

Proceedings of the 6th European Conference on Rapid Prototyping and Manufacturing

,

University of Nottingham, UK

,

July 1–3

.

71.

Wendel

,

B.

,

Rietzel

,

D.

,

Kühnlein

,

F.

,

Feulner

,

R.

,

Hülder

,

G.

, and

Schmachtenberg

,

E.

,

2008

, "

Additive Processing of Polymers

,"

Macromol. Mater. Eng.

,

293

(

10

), pp.

799

809

. 10.1002/mame.200800121

72.

Di Angelo

,

L.

, and

Di Stefano

,

P.

,

2011

, "

A Neural Network-Based Build Time Estimator for Layer Manufactured Objects

,"

Int. J. Adv. Manuf. Technol.

,

57

(

1–4

), pp.

215

224

. 10.1007/s00170-011-3284-8

73.

Giannatsis

,

J.

,

Dedoussis

,

V.

, and

Laios

,

L.

,

2001

, "

A Study of the Build-Time Estimation Problem for Stereolithography Systems

,"

Robot. Comput. Integr. Manuf.

,

17

(

4

), pp.

295

304

. 10.1016/S0736-5845(01)00007-2

74.

McClurkin

,

J. E.

, and

Rosen

,

D. W.

,

1998

, "

Computer-Aided Build Style Decision Support for Stereolithography

,"

Rapid Prototyp. J.

,

4

(

1

), pp.

4

13

. 10.1108/13552549810197505

76.

Abadi

,

M.

,

Paul

,

B.

,

Chen

,

J.

,

Chen

,

Z.

,

Davis

,

A.

,

Dean

,

J.

,

Devin

,

M.

,

Ghemawat

,

S.

,

Irving

,

G.

,

Isard

,

M.

,

Kudlur

,

M.

,

Levenberg

,

J.

,

Monga

,

R.

,

Moore

,

S.

,

Murray

,

D. G.

,

Steiner

,

B.

,

Tucker

,

P.

,

Vasudevan

,

V.

,

Warden

,

P.

,

Wicke

,

M.

,

Yu

,

Y.

, and

Zheng

,

X.

,

2016

, "

TensorFlow: A System for Large-Scale Machine Learning

,"

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI'16)

,

Savannah, GA

,

Nov. 2–4

, pp.

265

283

.

77.

Kingma

,

D. P.

, and

Ba

,

J.

,

2015

, "

Adam: A Method for Stochastic Optimization

,"

3rd International Conference for Learning Representations

,

San Diego, CA

,

May 7–9

.

79.

Pedregosa

,

F.

,

Varoquaux

,

G.

,

Gramfort

,

A.

,

Michel

,

V.

,

Thirion

,

B.

,

Grisel

,

O.

,

Blondel

,

M.

,

Prettenhofer

,

P.

,

Weiss

,

R.

,

Dubourg

,

V.

,

Vanderplas

,

J.

,

Passos

,

A.

,

Cournapeau

,

D.

,

Brucher

,

M.

,

Perrot

,

M.

, and

Duchesnay

,

E.

,

2011

, "

Scikit-Learn: Machine Learning in Python

,"

J. Mach. Learn. Res.

,

12

, pp.

2825

2830

.

You do not currently have access to this content.

Purchase this Content

Ann Design For 3d Data

Source: https://asmedigitalcollection.asme.org/mechanicaldesign/article/141/11/111701/955346/Design-Repository-Effectiveness-for-3D

Posted by: lightyproffecanded69.blogspot.com

0 Response to "Ann Design For 3d Data"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel